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PREFACE

The work described in this report was authorized under
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TWO-LASER MATRIX ASSISTED LASER DESORPTION/LASER IONIZATION
TIME-OF-FLIGHT MASS SPECTROMETRY OF BIOMOLECULES

INTRODUCTION

Matrix assisted laser desorption/ionization is one of the promising techniques which may
lead to efficient detection and identification of biomolecules. As such, considerable effort has
been and is cuurently being expended to develop new matrices, identify optimum
desorption/ionization conditions, and increase experimental detection efficiency and resolution.
In addition alternative approaches are being explored, including two-laser experiments wherein
the desorption event is spatially and temporally separated from the ionization event. Since laser
conditions conducive to efficient desorption may be vastly different from those appropriate for
efficient ionization, separation of the two processes may yield better results (higher sensitivity,
better resolution, better mass accuracy) than the single laser MALDI experiment.

To this end we have developed, constructed, and tested a custom mass spectrometer to
perform two-step laser desorption/ laser ionization time-of-flight mass spectrometry of
biomolecules. The instrument design permits desorption and/or ionization at either the output
of a pulsed valve or in the ionization region of the mass spectrometer. In addition, the sample
probe may be oriented in several configurations relative to the desorption and ionization lasers.
Finally, entrainment of the ionized sample in a pulsed gas beam has been incorporated in the
design of the instrument.

EXPERIMENTATION

The apparatus assembled to perform the two-laser MALDI experiments is a differentially
pumped two chamber vacuum system. Laser entrance and exit ports and sample probe inlet ports
are incorporated in both the lower "source" chamber (figure 1) and in the upper mass spec
chamber (figure 2). The time-of-flight mass spectrometer ion optics, located in the upper mass
spec chamber, are shown in figure 3. Not shown in these figures are the numerous control and
data acquisition electronics required by these experiments (delay generators, boxcar integrators,
computer interface module, laser power meters, stepper motor controllers, digital storage
oscilloscope). During an experiment many of these devices are controlled via computer using
software developed in-house. In addition, the data reduction and analysis routines were all
developed in-house.

The lasers utilized in these experiments were a SpectraPhysics DCR-2A and a Continuum
PY61C. Both lasers were nanosecond pulsed lasers with associated dye lasers and doubling
crystals for extension of the tunable dye laser output into the ultraviolet. Both lasers had three
signal inputs for external control and/or synchronization.




In order to perform the two-laser desorption/ionization experiments a custom electronics
module was designed and built to synchronize two Nd:YAG lasers and a pulsed valve. The
module supplied three triggers of varying pulsewidths and pulsebeights to each of the lasers and
a TTL level trigger to the pulsed valve. The module operated at repetition rates of .5 Hz to 10
Hz. In addition, the module could be externally triggered to operate in a single-shot mode. An
electronic diagram of the module is shown in figures 4 and 5.

RESULTS

Numerous experiments were performed to test and calibrate the instrument prior to the
two-laser MALDI experiments. The first set of experiments involved synchronization of the
pulsed molecular beam with the ionization laser. This was accomplished as follows. The carbon
dioxide pulsed valve gas was bubbled through methyl iodide (liquid) in route to the pulsed valve.
The resultant pulsed gas beam contained several percent methyl iodide. The laser "oscillator
out" sync pulse was used to trigger a delay generator, the output of which then triggered the
pulsed valve. The fourth harmonic (266 nm) of the Nd:YAG was focused into the center of the
ionization region of the mass spectrometer. By maximizing the intensity of the I* signal which
results from dissociation/ionization of methyl iodide at 266 nm the ionizing laser pulse and gas
pulse synchronization was optimized. = A representative mass spectrum obtained in these

experiments is shown in figure 6.

The second set of experiments involved calibration of the dye laser wavelength for
tunable ionization experiments. In these experiments pure krypton was used as the pulsed valve
gas. The dye laser was pumped by the second harmonic (532 nm) of the Nd:YAG laser. The
visible light pulse was frequency doubled using doubling crystals in an autotracking wavelength
extender (WEX). The resultant tunable UV light pulses were focused into the ionization region
of the mass spectrometer. By recording the intensity of the krypton ion while scanning the dye
laser wavelength, ion signals were observed which correspond to three-photon resonances in
atomic krypton. The dye laser wavelength scale was calibrated by comparing the observed
energies of these resonances with their literature values. Representative data for these
experiments is shown in figure 7.

In the two-laser desorption/ionization experiments ~300ul of a .0IM sinnapinic
acid/methanol solution was deposited on the probe tip. Before it could dry ~100ul of a .001M
phenylalanine/methanol solution was deposited on the probe tip as well. The probe was allowed
to air dry. The probe was then inserted into the mass spectrometer as shown in figure 2. The
probe tip was positioned approximately 2.5 cm from the center of the ionization region of the
mass spectrometer. The desorption laser (355 nm, ~ 150u) was focused onto the probe tip with
a 350 mm focal length lens. The ionization laser (266 nm, ~200uJ) was delayed by ~30us
relative to the desorption laser. The resultant mass spectrum (figure 8) displays signals due to
laser ionization and fragmentation of the phenylalanine analyte and sinnapinic acid matrix.




Signal levels acquired in these experiments appear comparible to those observed in single
laser MALDI experiments. This result in encouraging in that only a small fraction of the
desorbed neutral plume is interrogated and ionized by the second laser in the two-laser
experiment. This confirms earlier work suggesting that the large majority of species in the
desorption plume are neutrals rather than ions. As such, more efficient ionization of the
desorption plume should enhance signal levels and therefore detection sensitivities.

The resolution observed in the present two-laser experiments appears comparable to that
observed in the single laser MALDI experiment at the low masses studied to this point. The
resolution observed in time-of-flight mass spec experiments depends predominately on two
factors, the intial ion spatial distribution and the initial ion kinetic energy spread. As long as
thin samples and low laser powers are utilized, resolution in the single laser MALDI experiment
does not suffer greatly from spatial spread. In the two-laser experiment the initial ion spatial
distribution is determined by the ionization laser spot size. Dual stage ion extraction can largely
eliminate the deterioration of resolution in the two-laser experiment.

The kinetic energy spread observed in the single laser MALDI experiment is largely
circumvented by utilizing high extraction fields in the source region. Although the desorbed
neutrals in the two-laser experiment also possess a large kinetic energy spread, this spread is in
the direction perpendicular to the ion collection axis. Hence, as long as these ions can be
steered onto the detector using deflection plates the large initial kinetic energy spread does not
significantly deteriorate resolution. In addition, various schemes exist to improve resolution due
to initial kinetic energy spread in the two-laser experiment (time-lag focussing, post-source
pulse-focussing (PSPF)). The fourth jon acceleration grid required to perform post-source pulse-
focussing is incorporated in the present apparatus (see figure 3). However, because the
technique is primarily useful for high-mass ions, it has not yet been implemented.

The mass accuracy of the two-laser experiments is difficult to compare to the single laser
experiments with the limited data available at this time. The mass determination routines used
to analyze the existing data for the two-laser experiment (figure 9) result in mass accuracies of
+/- 0.5 amu at masses above 50 amu. This level of accuracy is comparable to that observed
in single-color gas phase laser photoionization experiments using similar calibration procedures.
Depending on experimental conditions and mass range, the multipoint calibration algorithms
included with many commercial single laser MALDI systems typically exhibit mass accuracies
of a few tenths of an amu. The lack of mass accuracy of the two laser experiment can be
attributed to experimental uncertainties in the ionization volume location, distortion of electric
field lines in the ionization region due to the presence of the sample probe, and inadequacies of
the fitting algorithms used in fitting the two color data. Other as yet undetermined experimental

factors may also contribute.




CONCLUSIONS

A custom two-laser matrix assisted laser desorption/laser ionization time-of-flight mass
spectrometer has been designed, constructed, and successfully demonstrated in detecting gas
phase biomolecular ions from an organic acid solid matrix.
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iy sample probe

.................................

4— to cryopump
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Ionization Desorption
laser laser

Figure 2: Top view of the LD/LI TOF-MS source chamber.
In the configuration shown, the probe is positioned
directly above and slightly off of the pulsed valve axis.
Alternatively, the ionization laser can cross the gas
beam after it has passed into the ionization region of
the mass spectrometer. The sample probe may be inserted
through any of the available ports. Neutrals produced by
the desorption laser pulse are entrained by the gas pulse
and transported into the upper mass spec chamber of the
apparatus for ionization by the second laser, followed by
time—of—flight mass separation and microchannel plate

detection.
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Figure 3: Top view of the LD/LI TOF-MS mass spec chamber
In the configuration shown, the desorption laser is normal
to the probe surface and the ionization laser crosses the
desorbed plume at the center of the ionization region of
the mass spectrometer. The ionization laser pulse is
passed out of the apparatus by a right angle turning
prism mounted inside the vacuum chamber.
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Figure 4: Side view of the LD/LI TOF-MS apparatus
showing the lower source chamber which houses
the pulsed valve, and the upper mass spec chamber
which houses the ion optics and ion detector. The
dashed circles indicate ports through which the
sample probe or the desorption or ionization laser

may enter.
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